Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotating Machinery Fault Diagnosis Based on Wavelet Fuzzy Neural Network

According to complicated fault characteristic of rotating machinery, its fault diagnosis based on wavelet fuzzy neural network (WFNN) which combines wavelet packet analysis and fuzzy neural network is put forward. By using it, the fuzzy fault diagnosis of rotating machinery is realized. All the arithmetic process of WFNN is realized through the computer. The results of simulation and test indic...

متن کامل

Model Based Fault Diagnosis in Rotating Machinery

A continuing task in engineering is to increase the reliability, availability and safety of technical processes and to achieve these fault diagnosis becomes an advanced supervision tool in the present industries. Vibration in rotating machinery is mostly caused by unbalance, misalignment, shaft crack, mechanical looseness and other malfunctions. The objective of this paper is to propose a model...

متن کامل

ART–KOHONEN neural network for fault diagnosis of rotating machinery

In this paper, a new neural network (NN) for fault diagnosis of rotating machinery which synthesises the theory of adaptive resonance theory (ART) and the learning strategy of Kohonen neural network (KNN), is proposed. For NNs, as the new case occurs, the corresponding data should be added to their dataset for learning. However, the ‘off-line’ NNs are unable to adapt autonomously and must be re...

متن کامل

Transformer fault diagnosis using continuous sparse autoencoder.

This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the con...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2017

ISSN: 2169-3536

DOI: 10.1109/access.2017.2728010